
Solution Final Exam — Partial Differential Equations

9 April 2015, Aletta Jacobshal 02

Duration: 3 hours

Question 1 (15 points)

Consider the equation

ux − 3x2uy = 0, (1)

where u = u(x, y).

a. (7 pt) Find the general solution of Eq. (1).

b. (3 pt) Find the solution of Eq. (1) with the auxiliary condition u(0, y) = −y2.
Consider now the equation

ux − 3x2uy = u. (2)

c. (5 pt) Find the general solution of Eq. (2), using the substitution u(x, y) = exw(x, y).

Solution

a. We solve the equation for the characteristic curves

dy

dx
= −3x2,

which directly gives

y = −x3 + C,

where C is the constant of integration. Solving for C we get

C = y + x3.

Since y + x3 is constant along the characteristic curves we conclude that the solution of
the problem has the general form

u(x, y) = f(y + x3),

where f is an arbitrary function of one variable.

b. Applying the general solution we find

u(0, y) = f(y) = −y2.

Therefore f(s) = −s2, and the solution we are after is

u(x, y) = −(y + x3)2.
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c. We have

ux = exw + exwx, uy = exwy.

Then Eq. (2) gives

ex(w + wx − 3x2wy − w) = 0,

which can be simplified, to

wx − 3x2wy = 0,

which is exactly Eq. (1), and for which we know that the general solution is

w = f(y + x3).

Therefore, the general solution for Eq. (2) is

u = exf(y + x3),

with f an arbitrary function.
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Question 2 (15 points)

Consider the equation

uxx − 4uxy + 4uyy = 0. (3)

a. (3 pt) What is the type (elliptic / hyperbolic / parabolic) of Eq. (3)? Explain your
answer.

b. (8 pt) Find a linear transformation (x, y) → (s, t) that reduces Eq. (3) to one of the
standard forms uss + utt = 0, uss − utt = 0, or uss = 0.

c. (4 pt) Find the general solution of Eq. (3).

Solution

a. We have a11 = 1, a22 = 4, and a12 = −2. Therefore

a212 = a11a22,

and Eq. (3) is parabolic.

b. Since the equation is parabolic the standard form is uss = 0, or ∂2su = 0.
Write the original equation as

Lu = 0,

where

L = ∂2x − 4∂x∂y + 4∂2y .

Then

L = (∂x − 2∂y)
2,

so we can set ∂s = ∂x − 2∂y and ∂t = ∂y, that is,(
∂s
∂t

)
=

(
1 −2
0 1

)(
∂x
∂y

)
.

The corresponding coordinate transformation is(
x
y

)
=

(
1 0
−2 1

)(
s
t

)
,

or

x = s, y = t− 2s,

which can be inverted to give

s = x, t = y + 2x.

c. We have transformed Eq. (3) to uss = 0. The latter has the general solution

u(s, t) = f(t) + sg(t).

This means that the original equation has the solution

u(x, y) = f(y + 2x) + xg(y + 2x).
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Question 3 (15 points)

Consider the equation for the damped string

utt − c2uxx + rut = 0, (4a)

where x ∈ [0, L], t ≥ 0, c > 0, r > 0, L > 0, and Dirichlet boundary conditions

u(0, t) = u(L, t) = 0. (4b)

Define the energy of the string as

E(t) =
1

2

∫ L

0
(u2t + c2u2x) dx. (5)

a. (8 pt) Prove that the energy of the string decreases with time, that is, dE/dt ≤ 0.

b. (7 pt) Prove uniqueness of solutions u that satisfy Eq. (4a), Eq. (4b), and u(x, 0) = g(x),
ut(x, 0) = h(x) for x ∈ [0, L].

Solution

a. We compute

dE

dt
=

1

2

∫ L

0

∂

∂t
(u2t + c2u2x) dx =

∫ L

0
(ututt + c2uxuxt) dx.

Using Eq. (4a) we rewrite the last expression as

dE

dt
=

∫ L

0
(utc

2uxx + c2uxuxt − ru2t ) dx = c2
∫ L

0
(utuxx + uxuxt) dx− r

∫ L

0
u2t dx.

Since (utux)x = utuxx + uxuxt we have

dE

dt
= c2

∫ L

0
(utux)x dx− r

∫ L

0
u2t dx = c2[(utux)|x=L − (utux)|x=0]− r

∫ L

0
u2t dx,

so

dE

dt
= c2[ut(L, t)ux(L, t)− ut(0, t)ux(0, t)]− r

∫ L

0
u2t dx.

From the definition of partial derivatives we have for fixed x = a that

ut(a, t) =
d

dt
[u(a, t)].

In particular,

ut(0, t) =
d

dt
[u(0, t)] =

d

dt
[0] = 0,

and similarly ut(L, t) = 0. Therefore,

dE

dt
= −r

∫ L

0
u2t dx.

Since u2t ≥ 0 we also have
∫ L
0 u2t dx ≥ 0 and since r > 0 we finally get

dE

dt
≤ 0.
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b. Consider two solutions u1, u2 that satisfy Eqs. (4a) and (4b). Define w = u1 − u2.
Then

wtt − c2wxx + rwt = 0,

and

w(x, 0) = u1(x, 0)− u2(x, 0) = g(x)− g(x) = 0,

wt(x, 0) = (u1)t(x, 0)− (u2)t(x, 0) = h(x)− h(x) = 0.

Then for the energy E(t) corresponding to w we have dE/dt ≤ 0 and

E(0) =
1

2

∫ L

0
(wt(x, 0)2 + c2wx(x, 0)2) dx.

We have wx(x, 0) = d
dx [w(x, 0)] = 0 and we also saw that wt(x, 0) = 0, so

E(0) = 0.

Since dE/dt ≤ 0 we conclude that E(t) ≤ 0 for all t ≥ 0. Furthermore, by its definition
E(t) ≥ 0 so we conclude that E(t) = 0. This implies that wt(x, t) = wx(x, t) = 0 for all
t ≥ 0 and x ∈ [0, L]. Therefore w is constant and since at t = 0 it is w(x, 0) = 0 we
conclude that w(x, t) = 0. From here u1(x, t) = u2(x, t).
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Question 4 (20 points)

Consider the Laplace equation ∆u = 0 in a half-disk H of radius a, that is,

H = {(x, y) : x2 + y2 ≤ a2, y ≥ 0},

with the boundary conditions u(a, θ) = sin θ for 0 ≤ θ ≤ π, and u(r, 0) = u(r, π) = 0 for
0 ≤ r ≤ a.

a. (5 pt) Separate the Laplace equation in polar coordinates r, θ using the ansatz u(r, θ) =
R(r)Θ(θ) and write two ordinary differential equations, one for R and one for Θ.

b. (7 pt) Solve the eigenvalue equation for Θ for the given boundary conditions (find eigen-
values and eigenfunctions). Consider known that the problem has no complex eigenvalues
but check for positive, negative, or zero eigenvalues.

c. (4 pt) Solve the differential equation for R.

d. (4 pt) Write the general solution u(r, θ) for arbitrary boundary conditions u(a, θ) = h(θ)
and then give the solution for the specific boundary conditions in this problem.

Solution

a. Substituting u(r, θ) = R(r)Θ(θ) into the equation

∆u = urr +
1

r
ur +

1

r2
uθθ = 0

we get

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0.

Then

r2
R′′

R
+ r

R′

R
+

Θ′′

Θ
= 0.

and separating the parts that depend on r from those that depend on θ we find

r2
R′′

R
+ r

R′

R
= −Θ′′

Θ
= λ,

where λ is a constant. Then we have the two equations

r2R′′ + rR′ − λR = 0, Θ′′ + λΘ = 0.

b. The given boundary conditions imply

Θ(0) = Θ(π) = 0.

For positive eigenvalues λ = β2 we have the solutions

Θ(θ) = A cos(βθ) +B sin(βθ).

From here

Θ(0) = A = 0, Θ(π) = A cos(βπ) +B sin(βπ) = 0.

Then

A = 0, B sin(βπ) = 0,
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and finally

βn = n, n = 1, 2, 3, . . .

For λ = 0 the solution is

Θ(θ) = Aθ +B

so

Θ(0) = B = 0, Θ(π) = Aπ +B = 0

giving the trivial solution A = B = 0 which is rejected.
For λ = −γ2 < 0 we have

Θ(θ) = Aeγθ +Be−γθ.

Then

Θ(0) = A+B = 0, Θ(π) = Aeγπ +Be−γπ = 0,

so

B = −A, Ae−γπ(e2γπ − 1) = 0.

The last equation implies that either γ = 0 (so λ = 0 but we assumed λ < 0) or A = B = 0
giving the trivial solution so we should also reject the case of negative eigenvalues.
Finally, the eigenvalues are

λn = β2n = n2,

and the eigenfunctions

Θn(θ) = sin(nθ).

c. The differential equation for R is r2R′′ + rR′ − n2R = 0. Try the solution R = rα which
gives α = ±n. Therefore

Rn(r) = Anr
n +Bnr

−n.

Since we want the solutions to be well-defined at r = 0 we set Bn = 0.

d. The general solution is

u(r, θ) =

∞∑
n=1

Anr
n sin(nθ).

For r = a we have

u(a, θ) =
∞∑
n=1

Ana
n sin(nθ) = h(θ)

so

An =
2

πan

∫ π

0
h(θ) sin(nθ).

In the specific case here we have

h(θ) = sin θ =

∞∑
n=1

Ana
n sin(nθ),

and comparing the two expressions we see that A1 = 1/a, An = 0 in all other cases.
Therefore the solution for the specific boundary conditions is

u(r, θ) =
r

a
sin θ.
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Question 5 (10 points)

Suppose that u is a harmonic function in the closed disk D = {r ≤ 1} and that u = 2 cos(3θ)+1
for r = 1.

a. (5 pt) What are the maximum and minimum values of u in D?

b. (5 pt) Find the value of u at the origin.

Solution

a. Since u is harmonic it attains its maximum and minimum values at the boundary. At
the boundary we have u = 2 cos(3θ) + 1. Since −1 ≤ cos(3θ) ≤ 1 and the values ±1 are
attained for θ ∈ [0, 2π] we conclude that −1 ≤ u ≤ 3 at the boundary and u attains the
maximum value 3 and the minimum value −1 at some point on the boundary. Therefore
these are also the respective maximum and minimum values on D.

b. Poisson’s formula is

u(r, θ) =
a2 − r2

2π

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ.

Applying Poisson’s formula for r = 0, a = 1, h(φ) = 2 cos(3φ) + 1 gives

u(0) =
1

2π

∫ 2π

0
(2 cos(3φ) + 1) dφ = 1.
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Question 6 (15 points)

Consider the function

f(x) = π − x, with x ∈ [0, π],

and its Fourier sine series.

a. (2 pt) Does the Fourier sine series converge in the L2 sense? Explain your answer.

b. (3 pt) What is the pointwise limit of the Fourier sine series for x ∈ R?

c. (3 pt) How does the Gibbs phenomenon manifest itself in the Fourier sine series? That is,
at which point(s) in [0, π] the Gibbs phenomenon appears and approximately how much
is the “overshoot” there?

d. (7 pt) Compute the coefficients of the Fourier sine series for f(x).

Solution

a. The function f is bounded in [0, π], therefore

‖f‖2 =

∫ π

0
f(x)2 dx < +∞.

This means that the Fourier sine series converges in the L2 sense.

b. The pointwise limit of the Fourier sine series can be deduced from the odd-periodic exten-
sion fext(x) of f(x) from [0, π] to R. This is constructed by first considering the extension
of f to an odd function defined in [−π, π] and then the further periodic extension to R.
This extension fext(x) is discontinuous at x = 2kπ, k ∈ Z and fext(2kπ

+) = π while
fext(2kπ

−) = −π. Therefore the Fourier sine series converges pointwise at x = 2kπ to
1
2 [fext(2kπ

+) + fext(2kπ
−)] = 0. At all other x ∈ R, fext(x) is continuous so the Fourier

series converges pointwise to fext(x).

c. The odd-periodic extension fext of f is discontinuous at x = 2kπ, k ∈ Z so the only point
in [0, π] where fext is discontinuous is x = 0. The jump of fext at x = 0 is fodd(0+) −
fodd(0−) = 2π. Therefore, for x ∈ [0, π] the Gibbs phenomenon appears at x = 0 and the
overshoot is approximately 0.09 · (2π) ' 0.56.

d. We have

An =
2

π

∫ π

0
(π − x) sin(nx) dx =

2

π

∫ π

0
(π − x)

(
− 1

n
cos(nx)

)′
dx.

Integration by parts gives

An = − 2

nπ

[
(π − x) cos(nx)

]π
0
− 2

nπ

∫ π

0
cos(nx) dx = − 2

nπ

[
(π − x) cos(nx) +

sin(nx)

n

]π
0

.

Then

An =
2

n
.
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