Solution Final Exam - Partial Differential Equations

9 April 2015, Aletta Jacobshal 02
Duration: 3 hours

Question 1 (15 points)

Consider the equation

$$
\begin{equation*}
u_{x}-3 x^{2} u_{y}=0 \tag{1}
\end{equation*}
$$

where $u=u(x, y)$.
a. ($7 \mathbf{p t}$) Find the general solution of Eq. (1).
b. (3 pt) Find the solution of Eq. (1) with the auxiliary condition $u(0, y)=-y^{2}$.

Consider now the equation

$$
\begin{equation*}
u_{x}-3 x^{2} u_{y}=u \tag{2}
\end{equation*}
$$

c. (5 pt) Find the general solution of Eq. (2), using the substitution $u(x, y)=e^{x} w(x, y)$.

Solution

a. We solve the equation for the characteristic curves

$$
\frac{d y}{d x}=-3 x^{2}
$$

which directly gives

$$
y=-x^{3}+C
$$

where C is the constant of integration. Solving for C we get

$$
C=y+x^{3}
$$

Since $y+x^{3}$ is constant along the characteristic curves we conclude that the solution of the problem has the general form

$$
u(x, y)=f\left(y+x^{3}\right)
$$

where f is an arbitrary function of one variable.
b. Applying the general solution we find

$$
u(0, y)=f(y)=-y^{2}
$$

Therefore $f(s)=-s^{2}$, and the solution we are after is

$$
u(x, y)=-\left(y+x^{3}\right)^{2}
$$

c. We have

$$
u_{x}=e^{x} w+e^{x} w_{x}, \quad u_{y}=e^{x} w_{y} .
$$

Then Eq. (2) gives

$$
e^{x}\left(w+w_{x}-3 x^{2} w_{y}-w\right)=0,
$$

which can be simplified, to

$$
w_{x}-3 x^{2} w_{y}=0,
$$

which is exactly Eq. (1), and for which we know that the general solution is

$$
w=f\left(y+x^{3}\right) .
$$

Therefore, the general solution for Eq. (2) is

$$
u=e^{x} f\left(y+x^{3}\right),
$$

with f an arbitrary function.

Question 2 (15 points)

Consider the equation

$$
\begin{equation*}
u_{x x}-4 u_{x y}+4 u_{y y}=0 . \tag{3}
\end{equation*}
$$

a. (3 pt) What is the type (elliptic / hyperbolic / parabolic) of Eq. (3)? Explain your answer.
b. (8 pt) Find a linear transformation $(x, y) \rightarrow(s, t)$ that reduces Eq. (3) to one of the standard forms $u_{s s}+u_{t t}=0, u_{s s}-u_{t t}=0$, or $u_{s s}=0$.
c. (4 pt) Find the general solution of Eq. (3).

Solution

a. We have $a_{11}=1, a_{22}=4$, and $a_{12}=-2$. Therefore

$$
a_{12}^{2}=a_{11} a_{22},
$$

and Eq. (3) is parabolic.
b. Since the equation is parabolic the standard form is $u_{s s}=0$, or $\partial_{s}^{2} u=0$.

Write the original equation as

$$
\mathcal{L} u=0,
$$

where

$$
\mathcal{L}=\partial_{x}^{2}-4 \partial_{x} \partial_{y}+4 \partial_{y}^{2} .
$$

Then

$$
\mathcal{L}=\left(\partial_{x}-2 \partial_{y}\right)^{2},
$$

so we can set $\partial_{s}=\partial_{x}-2 \partial_{y}$ and $\partial_{t}=\partial_{y}$, that is,

$$
\binom{\partial_{s}}{\partial_{t}}=\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)\binom{\partial_{x}}{\partial_{y}} .
$$

The corresponding coordinate transformation is

$$
\binom{x}{y}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)\binom{s}{t},
$$

or

$$
x=s, \quad y=t-2 s,
$$

which can be inverted to give

$$
s=x, \quad t=y+2 x .
$$

c. We have transformed Eq. (3) to $u_{s s}=0$. The latter has the general solution

$$
u(s, t)=f(t)+s g(t) .
$$

This means that the original equation has the solution

$$
u(x, y)=f(y+2 x)+x g(y+2 x) .
$$

Question 3 (15 points)

Consider the equation for the damped string

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}+r u_{t}=0, \tag{4a}
\end{equation*}
$$

where $x \in[0, L], t \geq 0, c>0, r>0, L>0$, and Dirichlet boundary conditions

$$
\begin{equation*}
u(0, t)=u(L, t)=0 . \tag{4b}
\end{equation*}
$$

Define the energy of the string as

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x . \tag{5}
\end{equation*}
$$

a. (8 pt) Prove that the energy of the string decreases with time, that is, $d E / d t \leq 0$.
b. ($\mathbf{7} \mathbf{~ p t}$) Prove uniqueness of solutions u that satisfy Eq. (4a), Eq. (4b), and $u(x, 0)=g(x)$, $u_{t}(x, 0)=h(x)$ for $x \in[0, L]$.

Solution

a. We compute

$$
\frac{d E}{d t}=\frac{1}{2} \int_{0}^{L} \frac{\partial}{\partial t}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x=\int_{0}^{L}\left(u_{t} u_{t t}+c^{2} u_{x} u_{x t}\right) d x
$$

Using Eq. (4a) we rewrite the last expression as

$$
\frac{d E}{d t}=\int_{0}^{L}\left(u_{t} c^{2} u_{x x}+c^{2} u_{x} u_{x t}-r u_{t}^{2}\right) d x=c^{2} \int_{0}^{L}\left(u_{t} u_{x x}+u_{x} u_{x t}\right) d x-r \int_{0}^{L} u_{t}^{2} d x .
$$

Since $\left(u_{t} u_{x}\right)_{x}=u_{t} u_{x x}+u_{x} u_{x t}$ we have

$$
\frac{d E}{d t}=c^{2} \int_{0}^{L}\left(u_{t} u_{x}\right)_{x} d x-r \int_{0}^{L} u_{t}^{2} d x=c^{2}\left[\left.\left(u_{t} u_{x}\right)\right|_{x=L}-\left.\left(u_{t} u_{x}\right)\right|_{x=0}\right]-r \int_{0}^{L} u_{t}^{2} d x
$$

so

$$
\frac{d E}{d t}=c^{2}\left[u_{t}(L, t) u_{x}(L, t)-u_{t}(0, t) u_{x}(0, t)\right]-r \int_{0}^{L} u_{t}^{2} d x .
$$

From the definition of partial derivatives we have for fixed $x=a$ that

$$
u_{t}(a, t)=\frac{d}{d t}[u(a, t)] .
$$

In particular,

$$
u_{t}(0, t)=\frac{d}{d t}[u(0, t)]=\frac{d}{d t}[0]=0,
$$

and similarly $u_{t}(L, t)=0$. Therefore,

$$
\frac{d E}{d t}=-r \int_{0}^{L} u_{t}^{2} d x .
$$

Since $u_{t}^{2} \geq 0$ we also have $\int_{0}^{L} u_{t}^{2} d x \geq 0$ and since $r>0$ we finally get

$$
\frac{d E}{d t} \leq 0
$$

b. Consider two solutions u_{1}, u_{2} that satisfy Eqs. (4a) and (4b). Define $w=u_{1}-u_{2}$. Then

$$
w_{t t}-c^{2} w_{x x}+r w_{t}=0,
$$

and

$$
\begin{gathered}
w(x, 0)=u_{1}(x, 0)-u_{2}(x, 0)=g(x)-g(x)=0 \\
w_{t}(x, 0)=\left(u_{1}\right)_{t}(x, 0)-\left(u_{2}\right)_{t}(x, 0)=h(x)-h(x)=0
\end{gathered}
$$

Then for the energy $E(t)$ corresponding to w we have $d E / d t \leq 0$ and

$$
E(0)=\frac{1}{2} \int_{0}^{L}\left(w_{t}(x, 0)^{2}+c^{2} w_{x}(x, 0)^{2}\right) d x .
$$

We have $w_{x}(x, 0)=\frac{d}{d x}[w(x, 0)]=0$ and we also saw that $w_{t}(x, 0)=0$, so

$$
E(0)=0 .
$$

Since $d E / d t \leq 0$ we conclude that $E(t) \leq 0$ for all $t \geq 0$. Furthermore, by its definition $E(t) \geq 0$ so we conclude that $E(t)=0$. This implies that $w_{t}(x, t)=w_{x}(x, t)=0$ for all $t \geq 0$ and $x \in[0, L]$. Therefore w is constant and since at $t=0$ it is $w(x, 0)=0$ we conclude that $w(x, t)=0$. From here $u_{1}(x, t)=u_{2}(x, t)$.

Question 4 (20 points)

Consider the Laplace equation $\Delta u=0$ in a half-disk H of radius a, that is,

$$
H=\left\{(x, y): x^{2}+y^{2} \leq a^{2}, y \geq 0\right\}
$$

with the boundary conditions $u(a, \theta)=\sin \theta$ for $0 \leq \theta \leq \pi$, and $u(r, 0)=u(r, \pi)=0$ for $0 \leq r \leq a$.
a. (5 pt) Separate the Laplace equation in polar coordinates r, θ using the ansatz $u(r, \theta)=$ $R(r) \Theta(\theta)$ and write two ordinary differential equations, one for R and one for Θ.
b. ($7 \mathbf{p t}$) Solve the eigenvalue equation for Θ for the given boundary conditions (find eigenvalues and eigenfunctions). Consider known that the problem has no complex eigenvalues but check for positive, negative, or zero eigenvalues.
c. $(4 \mathrm{pt})$ Solve the differential equation for R.
d. (4 pt) Write the general solution $u(r, \theta)$ for arbitrary boundary conditions $u(a, \theta)=h(\theta)$ and then give the solution for the specific boundary conditions in this problem.

Solution

a. Substituting $u(r, \theta)=R(r) \Theta(\theta)$ into the equation

$$
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

we get

$$
R^{\prime \prime} \Theta+\frac{1}{r} R^{\prime} \Theta+\frac{1}{r^{2}} R \Theta^{\prime \prime}=0
$$

Then

$$
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+\frac{\Theta^{\prime \prime}}{\Theta}=0
$$

and separating the parts that depend on r from those that depend on θ we find

$$
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}=-\frac{\Theta^{\prime \prime}}{\Theta}=\lambda
$$

where λ is a constant. Then we have the two equations

$$
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0, \quad \Theta^{\prime \prime}+\lambda \Theta=0
$$

b. The given boundary conditions imply

$$
\Theta(0)=\Theta(\pi)=0
$$

For positive eigenvalues $\lambda=\beta^{2}$ we have the solutions

$$
\Theta(\theta)=A \cos (\beta \theta)+B \sin (\beta \theta)
$$

From here

$$
\Theta(0)=A=0, \quad \Theta(\pi)=A \cos (\beta \pi)+B \sin (\beta \pi)=0
$$

Then

$$
A=0, \quad B \sin (\beta \pi)=0
$$

and finally

$$
\beta_{n}=n, n=1,2,3, \ldots
$$

For $\lambda=0$ the solution is

$$
\Theta(\theta)=A \theta+B
$$

So

$$
\Theta(0)=B=0, \quad \Theta(\pi)=A \pi+B=0
$$

giving the trivial solution $A=B=0$ which is rejected.
For $\lambda=-\gamma^{2}<0$ we have

$$
\Theta(\theta)=A e^{\gamma \theta}+B e^{-\gamma \theta}
$$

Then

$$
\Theta(0)=A+B=0, \quad \Theta(\pi)=A e^{\gamma \pi}+B e^{-\gamma \pi}=0
$$

so

$$
B=-A, \quad A e^{-\gamma \pi}\left(e^{2 \gamma \pi}-1\right)=0
$$

The last equation implies that either $\gamma=0$ (so $\lambda=0$ but we assumed $\lambda<0$) or $A=B=0$ giving the trivial solution so we should also reject the case of negative eigenvalues.
Finally, the eigenvalues are

$$
\lambda_{n}=\beta_{n}^{2}=n^{2}
$$

and the eigenfunctions

$$
\Theta_{n}(\theta)=\sin (n \theta)
$$

c. The differential equation for R is $r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0$. Try the solution $R=r^{\alpha}$ which gives $\alpha= \pm n$. Therefore

$$
R_{n}(r)=A_{n} r^{n}+B_{n} r^{-n}
$$

Since we want the solutions to be well-defined at $r=0$ we set $B_{n}=0$.
d. The general solution is

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{n} \sin (n \theta)
$$

For $r=a$ we have

$$
u(a, \theta)=\sum_{n=1}^{\infty} A_{n} a^{n} \sin (n \theta)=h(\theta)
$$

so

$$
A_{n}=\frac{2}{\pi a^{n}} \int_{0}^{\pi} h(\theta) \sin (n \theta)
$$

In the specific case here we have

$$
h(\theta)=\sin \theta=\sum_{n=1}^{\infty} A_{n} a^{n} \sin (n \theta)
$$

and comparing the two expressions we see that $A_{1}=1 / a, A_{n}=0$ in all other cases. Therefore the solution for the specific boundary conditions is

$$
u(r, \theta)=\frac{r}{a} \sin \theta
$$

Question 5 (10 points)

Suppose that u is a harmonic function in the closed disk $D=\{r \leq 1\}$ and that $u=2 \cos (3 \theta)+1$ for $r=1$.
a. ($5 \mathbf{p t}$) What are the maximum and minimum values of u in D ?
b. (5 pt) Find the value of u at the origin.

Solution

a. Since u is harmonic it attains its maximum and minimum values at the boundary. At the boundary we have $u=2 \cos (3 \theta)+1$. Since $-1 \leq \cos (3 \theta) \leq 1$ and the values ± 1 are attained for $\theta \in[0,2 \pi]$ we conclude that $-1 \leq u \leq 3$ at the boundary and u attains the maximum value 3 and the minimum value -1 at some point on the boundary. Therefore these are also the respective maximum and minimum values on D.
b. Poisson's formula is

$$
u(r, \theta)=\frac{a^{2}-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{h(\phi)}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} d \phi .
$$

Applying Poisson's formula for $r=0, a=1, h(\phi)=2 \cos (3 \phi)+1$ gives

$$
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi}(2 \cos (3 \phi)+1) d \phi=1 .
$$

Question 6 (15 points)

Consider the function

$$
f(x)=\pi-x, \quad \text { with } \quad x \in[0, \pi]
$$

and its Fourier sine series.
a. (2 pt) Does the Fourier sine series converge in the L^{2} sense? Explain your answer.
b. (3 pt) What is the pointwise limit of the Fourier sine series for $x \in \mathbb{R}$?
c. (3 pt) How does the Gibbs phenomenon manifest itself in the Fourier sine series? That is, at which point(s) in $[0, \pi]$ the Gibbs phenomenon appears and approximately how much is the "overshoot" there?
d. $(7 \mathbf{p t})$ Compute the coefficients of the Fourier sine series for $f(x)$.

Solution

a. The function f is bounded in $[0, \pi]$, therefore

$$
\|f\|^{2}=\int_{0}^{\pi} f(x)^{2} d x<+\infty
$$

This means that the Fourier sine series converges in the L^{2} sense.
b. The pointwise limit of the Fourier sine series can be deduced from the odd-periodic extension $f_{\text {ext }}(x)$ of $f(x)$ from $[0, \pi]$ to \mathbb{R}. This is constructed by first considering the extension of f to an odd function defined in $[-\pi, \pi]$ and then the further periodic extension to \mathbb{R}. This extension $f_{\text {ext }}(x)$ is discontinuous at $x=2 k \pi, k \in \mathbb{Z}$ and $f_{\text {ext }}\left(2 k \pi^{+}\right)=\pi$ while $f_{\text {ext }}\left(2 k \pi^{-}\right)=-\pi$. Therefore the Fourier sine series converges pointwise at $x=2 k \pi$ to $\frac{1}{2}\left[f_{\text {ext }}\left(2 k \pi^{+}\right)+f_{\text {ext }}\left(2 k \pi^{-}\right)\right]=0$. At all other $x \in \mathbb{R}, f_{\text {ext }}(x)$ is continuous so the Fourier series converges pointwise to $f_{\text {ext }}(x)$.
c. The odd-periodic extension $f_{\text {ext }}$ of f is discontinuous at $x=2 k \pi, k \in \mathbb{Z}$ so the only point in $[0, \pi]$ where $f_{\text {ext }}$ is discontinuous is $x=0$. The jump of $f_{\text {ext }}$ at $x=0$ is $f_{\text {odd }}\left(0^{+}\right)-$ $f_{\text {odd }}\left(0^{-}\right)=2 \pi$. Therefore, for $x \in[0, \pi]$ the Gibbs phenomenon appears at $x=0$ and the overshoot is approximately $0.09 \cdot(2 \pi) \simeq 0.56$.
d. We have

$$
A_{n}=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x)\left(-\frac{1}{n} \cos (n x)\right)^{\prime} d x
$$

Integration by parts gives

$$
A_{n}=-\frac{2}{n \pi}[(\pi-x) \cos (n x)]_{0}^{\pi}-\frac{2}{n \pi} \int_{0}^{\pi} \cos (n x) d x=-\frac{2}{n \pi}\left[(\pi-x) \cos (n x)+\frac{\sin (n x)}{n}\right]_{0}^{\pi}
$$

Then

$$
A_{n}=\frac{2}{n}
$$

